Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Environ Sci Pollut Res Int ; 30(33): 81019-81037, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20238648

ABSTRACT

As COVID-19 has swept across the world, the escalating number of confirmed and suspected cases overwhelmed the admission capacity of the designated hospitals. Faced with such a grim situation, governments made a quick decision to build emergency medical facilities to address the outbreak. However, the emergency medical facilities faced a huge risk of epidemic spread and improper site could lead to serious secondary transmission. Using the disaster prevention and risk avoidance function of urban green space can solve the problem of selecting the location of emergency medical facilities to a certain extent, with country parks having a high degree of compatibility with the latter. Based on the location requirements of emergency medical facilities, using Analytic Hierarchy Process and Delphi method, through analyzing the type of country parks, effective risk avoidance area, spatial fragmentation, distance from water sources, wind direction, and distance from the city, quantification of 8 impact factors such as hydrogeology and traffic duration was conducted to comprehensively compare 30 country parks in Guangzhou. The results showed that the overall quality of country parks approximated a normal distribution, with Lianma Forest Country Park having the highest comprehensive score and the most balanced distribution of scores for various impact factors. Considering safety, expandability, rehabilitation, convenience, pollution prevention, and fecal isolation, it is a preferred destination for emergency medical facility construction.


Subject(s)
COVID-19 , Public Health , Humans , Parks, Recreational , Emergencies , Cities , China , Public Facilities
2.
Int J Environ Res Public Health ; 19(23)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2268813

ABSTRACT

City parks are suitable sites for the construction of emergency medical facilities. A comparison of various types of city parks revealed that country parks fit closely with site selection conditions for emergency medical facilities. Based on the latter site selection requirements, eight impact factors such as park type, effective avoidance area, spatial fragmentation degree, water source protection area, wind direction, distance from city center, impermeability, and transport duration were quantified, and then 29 country parks in the Hangzhou Urban Area were compared using Principal Component Analysis (PCA). The calculation results showed that Linglong Country Park has the highest score, taking into account the characteristics of safety, scalability, rehabilitation, convenience, pollution prevention, and isolation. Linglong can be given priority selection as a target location for emergency medical facilities. In addition, Silver Lake Country Park, Dongqiao Country Park, Taihuyuan Country Park, and Tuankou Country Park have higher scores and can be used as alternative targets for emergency plans. The scoring results prove that the evaluation method has a high degree of rigor, a significant degree of discrimination, and a high degree of consistency between the validity and weight assignment of each impact factor. In view of the different geographical conditions in each region, the weight assignment of each impact factor can be adjusted according to local conditions and can help make effective use of existing conditions and avoid disadvantages.


Subject(s)
COVID-19 , Parks, Recreational , Humans , COVID-19/epidemiology , China/epidemiology , Cities , Recreation
3.
World J Virol ; 12(1): 22-29, 2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2234618

ABSTRACT

As the outbreak evolves, our understanding of the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (COVID-19) on the liver has grown. In this review, we discussed the hepatotropic nature of SARS-CoV-2 and described the distribution of receptors for SARS-CoV-2 (e.g., angiotensin-converting enzyme 2) in the vascular endothelium and cholangiocytes of the liver. Also, we proposed mechanisms for possible viral entry that mediate liver injury, such as liver fibrosis. Due to SARS-CoV-2-induced liver damage, many COVID-19 patients develop liver dysfunction, mainly characterized by moderately elevated serum aminotransferase levels. Patients with chronic liver disease (CLD), such as cirrhosis, hepatocellular carcinoma, nonalcoholic fatty liver disease, and viral hepatitis, are also sensitive to SARS-CoV-2 infection. We discussed the longer disease duration and higher mortality following SARS-CoV-2 infection in CLD patients. Correspondingly, relevant risk factors and possible mechanisms were proposed, including cirrhosis-related immune dysfunction and liver deco-mpensation. Finally, we discussed the potential hepatotoxicity of COVID-19-related vaccines and drugs, which influence the treatment of CLD patients with SARS-CoV-2 infection. In addition, we suggested that COVID-19 vaccines in terms of immunogenicity, duration of protection, and long-term safety for CLD patients need to be further researched. The diagnosis and treatment for liver injury caused by COVID-19 were also analyzed in this review.

4.
J Memb Sci ; 672: 121257, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2165705

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic makes protective respirators highly demanded. The respirator materials should filter out viral fine aerosols effectively, allow airflow to pass through easily, and wick away the exhalant moisture timely. However, the commonly used melt-blown nonwovens perform poorly in meeting these requirements simultaneously. Herein, dual-bionic nano-groove structured (NGS) nanofibers are fabricated to serve as protective, breathable and moisture-wicking respirator materials. The creativity of this design is that the tailoring of dual-bionic nano-groove structure, combined with the strong polarity and hydrophilicity of electrospinning polymer, not only endows the nanofibrous materials with improved particle capture ability but also enable them to wick away and transmit breathing moisture. Benefitting from the synthetic effect of hierarchical structure and the intrinsic property of polymers, the resulting NGS nanofibrous membranes show a high filtration efficiency of 99.96%, a low pressure drop of 110 Pa, and a high moisture transmission rate of 5.67 kg m-2 d-1 at the same time. More importantly, the sharp increase of breathing resistance caused by the condensation of exhaled moisture is avoided, overcoming the bottleneck faced by traditional nonwovens and paving a new way for developing protective respirators with high wear comfortability.

5.
EBioMedicine ; 85: 104297, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117785

ABSTRACT

BACKGROUND: Increasing severe morbidity and mortality by simultaneous or sequential infections with SARS-CoV-2 and influenza A viruses (IAV), especially in the elderly and obese patients, highlight the urgency of developing a combination vaccine against COVID-19 and influenza. METHODS: Self-assembling SARS-CoV-2 RBD-trimer and Influenza H1N1 HA1-trimer antigens were constructed, upon the stable fusion core in post-fusion conformation. Immunogenicity of SARS-CoV-2 RBD-trimer vaccine and H1N1 HA1-trimer antigens candidates were evaluated in mice. Protection efficacy of a combination vaccine candidate against SARS-CoV-2 and IAV challenge was identified using the K18-hACE2 mouse model. FINDINGS: Both the resultant RBD-trimer for SARS-CoV-2 and HA1-trimer for H1N1 influenza fully exposed receptor-binding motifs (RBM) or receptor-binding site (RBS). Two-dose RBD-trimer induced significantly higher binding and neutralizing antibody titers, and also a strong Th1/Th2 balanced cellular immune response in mice. Similarly, the HA1-trimer vaccine was confirmed to exhibit potent immunogenicity in mice. A combination vaccine candidate, composed of RBD-trimer and HA1-trimer, afforded high protection efficacy in mouse models against stringent lethal SARS-CoV-2 and homogenous H1N1 influenza co-infection, characterized by 100% survival rate. INTERPRETATION: Our results represent a proof of concept for a combined vaccine candidate based on trimerized receptor binding domain against co-epidemics of COVID-19 and influenza. FUNDING: This project was funded by the Strategic Priority Research Program of CAS (XDB29040201), the National Natural Science Foundation of China (81830050, 81901680, and 32070569) and China Postdoctoral Science Foundation (2021M703450).


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Mice , Humans , Animals , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Vaccines, Combined
6.
Chem Eng J ; 438: 135589, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1712496

ABSTRACT

Nearly 200 million people have been diagnosed with COVID-19 since the outbreak in 2019, and this disease has claimed more than 5 million lives worldwide. Currently, researchers are focusing on vaccine development and the search for an effective strategy to control the infection source. This work designed a detection platform based on Surface-Enhanced Raman Spectroscopy (SERS) by introducing acetonitrile and calcium ions into the silver nanoparticle reinforced substrate system to realize the rapid detection of novel coronavirus. Acetonitrile may amplify the calcium-induced hot spots of silver nanoparticles and significantly enhanced the stability of silver nanoparticles. It also elicited highly sensitive SERS signals of the virus. This approach allowed us to capture the characteristic SERS signals of SARS-CoV-2, Human Adenovirus 3, and H1N1 influenza virus molecules at a concentration of 100 copies/test (PFU/test) with upstanding reproduction and signal-to-noise ratio. Machine learning recognition technology was employed to qualitatively distinguish the three virus molecules with 1000 groups of spectra of each virus. Acetonitrile is a potent internal marker in regulating the signal intensity of virus molecules in saliva and serum. Thus, we used the SERS peak intensity to quantify the virus content in saliva and serum. The results demonstrated a satisfactory linear relationship between peak intensity and protein concentration. Collectively, this rapid detection method has a broad application prospect in clinical diagnosis of viruses, management of emergent viral infectious diseases, and exploration of the interaction between viruses and host cells.

7.
Nat Commun ; 12(1): 5000, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361637

ABSTRACT

The successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.


Subject(s)
Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/administration & dosage , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Epitopes , Female , HEK293 Cells , Haplorhini , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Vero Cells , Virus Activation
8.
ISPRS International Journal of Geo-Information ; 10(3):145, 2021.
Article in English | ProQuest Central | ID: covidwho-1143512

ABSTRACT

The COVID-19 pandemic is a major problem facing humanity throughout the world. The rapid and accurate tracking of population flows may therefore be epidemiologically informative. This paper adopts a massive amount of daily population flow data (from January 10 to March 15, 2020) for China obtained from the Baidu Migration platform to analyze the changes of the spatiotemporal patterns and network characteristics in population flow during the pre-outbreak period, outbreak period, and post-peak period. The results show that (1) for temporal characteristics of population flow, the total population flow varies greatly between the three periods, with an overall trend of the pre-outbreak period flow > the post-peak period flow > the outbreak period flow. Impacted by the lockdown measures, the population flow in various provinces plunged drastically and remained low until the post-peak period, at which time it gradually increased. (2) For the spatial pattern, the pattern of population flow is divided by the geographic demarcation line known as the Hu (Heihe-Tengchong) Line, with a high-density interconnected network in the southeast half and a low-density serial-connection network in the northwest half. During the outbreak period, Wuhan city appeared as a hollow region in the population flow network;during the post-peak period, the population flow increased gradually, but it was mainly focused on intra-provincial flow. (3) For the network characteristic changes, during the outbreak period, the gap in the network status between cities at different administrative levels narrowed significantly. Thus, the feasibility of Baidu migration data, comparison with non-epidemic periods, and optimal implications are discussed. This paper mainly described the difference and specific information under non-normal situation compared with existing results under a normal situation, and analyzed the impact mechanism, which can provide a reference for local governments to make policy recommendations for economic recovery in the future under the epidemic period.

9.
BMC Infect Dis ; 21(1): 207, 2021 Feb 24.
Article in English | MEDLINE | ID: covidwho-1102332

ABSTRACT

BACKGROUND: A large-scale global outbreak of coronavirus disease-19 (COVID-19) out of Wuhan, from China, occurred in January 2020. To examine the clinical characteristics of COVID-19 in infected patients out of Wuhan, from China. METHODS: Thirteen patients were confirmed to be infected with novel coronavirus-2019 (2019-nCoV) between January 27 and February 8, 2020, in Baoji city, Shannxi, northwestern China. Epidemiological and clinical information, and computed to morphology imaging data from all COVID-19 patients were collected; cases were divided into two groups according to the severity of infection (mild or severe). RESULTS: Nine (9/13) COVID-19 patients exhibited mild disease severity, and defined as second-generation human-to-human transmission cases. Most patients (11/13) had a history of travel to or from Wuhan. There were no differences in sex and age between the mild and severe cases (all P > 0.05). A moderate degree of fever (11/13), cough (13/13), and fatigue (8/13) were common symptoms; however, there was no statistical difference between mild and severe cases in this regard (all P > 0.05). Oxyhemoglobin saturation and oxygenation index decreased, and C-reactive protein (CRP) and serum amyloid A (SAA) levels were elevated in all patients with COVID-19 infection, with statistically significant differences between those with severe disease and mild infection (all P < 0.05). Twelve of 13 COVID-19 patients exhibited changes in chest CT imaging features, and time course changes were different between mild and severe cases (all P < 0.05). CONCLUSION: Most cases of COVID-19 infection were second-generation human-to-human transmissions from Wuhan and were mild in severity. The clinical characteristics of COVID-19 varied. Oxyhemoglobin saturation, oxygenation index, CRP and SAA levels, and CT features were reliable parameters to evaluate the severity of COVID-19 infection. However, a few patients with mild COVID-19 disease lacked typical characteristics such as fever and changes in CT imaging features.


Subject(s)
COVID-19/complications , SARS-CoV-2 , Adult , Aged , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/epidemiology , Case-Control Studies , China/epidemiology , Female , Humans , Male , Middle Aged , Serum Amyloid A Protein/analysis , Tomography, X-Ray Computed
10.
Geophys Res Lett ; 47(19): e2020GL090080, 2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-1028542

ABSTRACT

The COVID-19 epidemic has substantially limited human activities and affected anthropogenic emissions. In this work, daily NO x emissions are inferred using a regional data assimilation system and hourly surface NO2 measurement over China. The results show that because of the coronavirus outbreak, NO x emissions across the whole mainland China dropped sharply after 31 January, began to rise slightly in certain areas after 10 February, and gradually recover across the country after 20 February. Compared with the emissions before the outbreak, NO x emissions fell by more than 60% and ~30% in many large cities and most small to medium cities, respectively. Overall, NO x emissions were reduced by 36% over China, which were mainly contributed by transportation. Evaluations show that the inverted changes over eastern China are credible, whereas those in western China might be underestimated. These findings are of great significance for exploring the reduction potential of NO x emissions in China.

11.
J Natl Med Assoc ; 113(2): 212-217, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-894055

ABSTRACT

OBJECTIVE: To investigate and evaluate the clinical features of patients infected with the 2019 novel coronavirus (COVID-19) outside of Wuhan. METHODS: 105 patients admitted to our hospital with clinical- and laboratory-confirmed COVID-19 infection were studied. Data were collected from January 17, 2020 to March 5, 2020. RESULTS: 105 patients (57 male and 48 female) were confirmed to have COVID-19 infection. Among the 105 patients, 55 (52%) had made short trips to Wuhan during the two weeks before the onset of illness, and these were the first-generation confirmed cases. An exact date of close contact with someone in Wenzhou with confirmed or suspected COVID-19 infection from Wuhan (the second-generation confirmed cases) could be provided by 38 (36%) patients. Of the remaining patients, six (6%; the third-generation confirmed cases) were familial clusters of the second-generation confirmed cases, three (3%) had no definite epidemiological features, and 16 (15%) were from the same location as for the case report. CONCLUSION: Due to the infectiousness of COVID-19, patients with infections should be diagnosed and treated as early as possible after developing fever symptoms or showing other clinical characteristics or imaging features. With respect to high-risk cases, we must focus on any complications that arise and take effective measures to treat them immediately. This will significantly improve the prognosis of patients with severe infections.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 , Hospitalization/statistics & numerical data , Methylprednisolone/administration & dosage , Symptom Assessment , Adult , Anti-Inflammatory Agents/administration & dosage , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/therapy , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/statistics & numerical data , China/epidemiology , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Female , Humans , Lung/diagnostic imaging , Male , Outcome and Process Assessment, Health Care , SARS-CoV-2/isolation & purification , Severity of Illness Index , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , Time-to-Treatment , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data
12.
J. Xi'An Jiaotong Univ. Med. Sci. ; 4(41):488-491, 2020.
Article in Chinese | ELSEVIER | ID: covidwho-683576

ABSTRACT

Coronavirus disease 2019 (COVID-19) is highly infectious and seriously harmful to human health. According to the clinical characteristics of COVID-19, it can be classified into mild, moderate, severe and critical ones. The treatment for critical cases is an important factor of reducing the mortality rate of the disease and is always dependent on the intensive care unit (ICU). The ICU therapy strategies involve not only curing the critical cases, but also avoiding cross infection in the same ward. Therefore, we have formulated detailed response management strategies, including the establishment of core groups, standardization of diagnosis and treatment process, strengthening personnel management, multimodal training assessment, and overall allocation of protection materials. We hope the strategies can provide reference for relevant ICUs.

SELECTION OF CITATIONS
SEARCH DETAIL